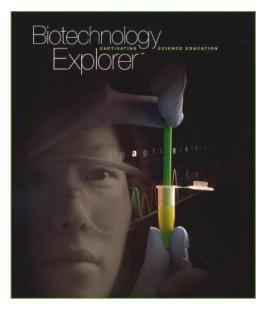


Professional Development


Novel Research Starts with... GAPDH

Instructors

Stan Hitomi

Coordinator – Math & Science Principal – Alamo School San Ramon Valley Unified School District Danville, CA

Kirk Brown

Lead Instructor, Edward Teller Education Center Science Chair, Tracy High School and Delta College, Tracy, CA

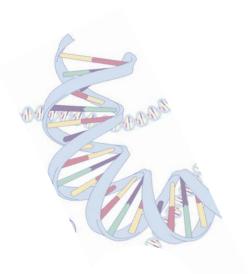
Bio-Rad Curriculum and Training Specialists: Sherri Andrews, Ph.D.

sherri_andrews@bio-rad.com

Essy Levy, M.Sc. essy_levy@bio-rad.com

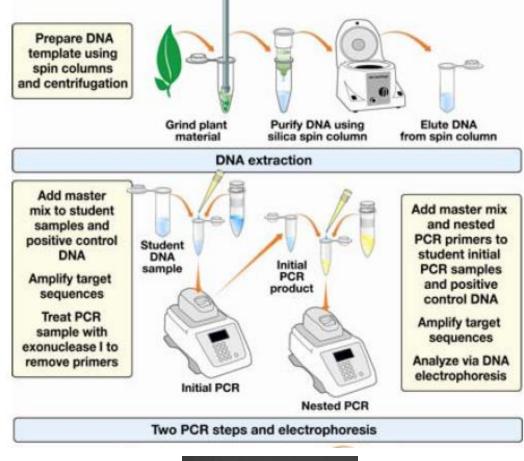
Leigh Brown, M.A. leigh_brown@bio-rad.com

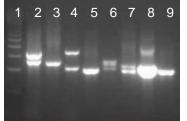
Why Teach


Novel Research Using *GAPDH* PCR?

- Students conduct inquiry-based experiments
- Students understand research is a process rather than a single experiment
- Students learn laboratory skills and techniques commonly used in research
- Students guide the research process and make decisions about their next steps
- Students formulate scientific explanations using data, logic, and evidence
- Students learn from failures and unexpected results

Workshop Timeline

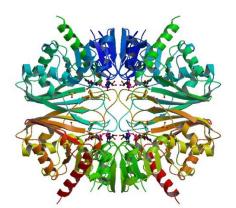

- Introduction
- Preparation of Initial PCR Reactions
- Exonuclease Treatment
- Preparation of Nested PCR Reactions
- Analyze PCR results



Laboratory

Overview

Benefits of using plants


- Large number of species
- Lots of diversity
- Phylogenetic approaches
- Avoid ethical concerns associated with animals
- No pre-approval

What is a Housekeeping Gene?

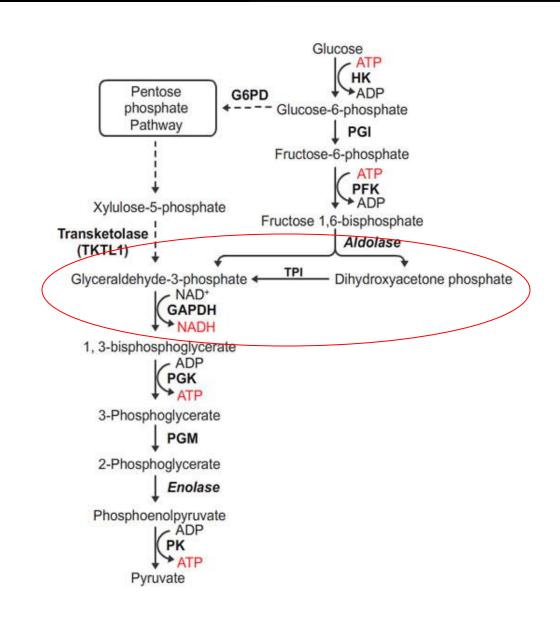
Highly conserved genes that must be continually expressed in all tissues of organisms to maintain essential cellular functions.

Examples:

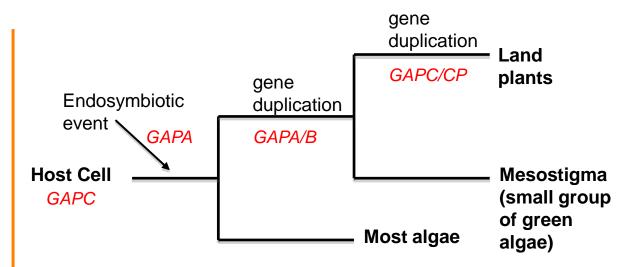
• GAPDH

• Cytochrome C

• ATPase

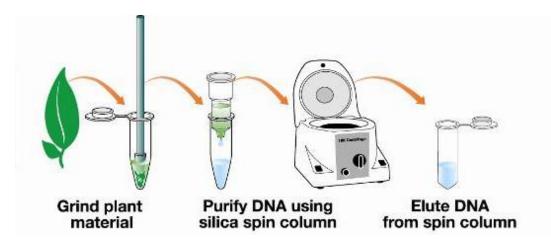

• *ß-actin*

Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH)


- Enzyme of glycolysis
- Structure and reaction mechanism well-studied
- Multitude of sequences
- Highly conserved

Gene Families

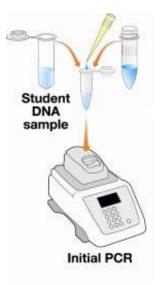
Enzyme Function	GAPDH Protein Subunit	EC Designation*	Arabidopsis Gene
NAD ⁺ -dependent	GAPC	EC 1.1.1.12	GAPC
GAPDH in cytosol	GAPC-2	*	GAPC-2
NAD ⁺ -dependent	GAPCP	EC 1.1.1.12	GAPCP
GAPDH in plastids	GAPCP-2	*	GAPCP-2



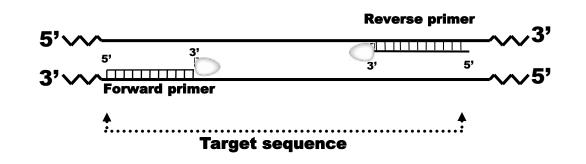
Extracting DNA

How do we isolate and Identify the *GAPDH* gene?

- Use young, fresh plant-tissue
- DNA extraction at room temperature
- Time requirement ~30 minutes
- Does not require DNA quantification



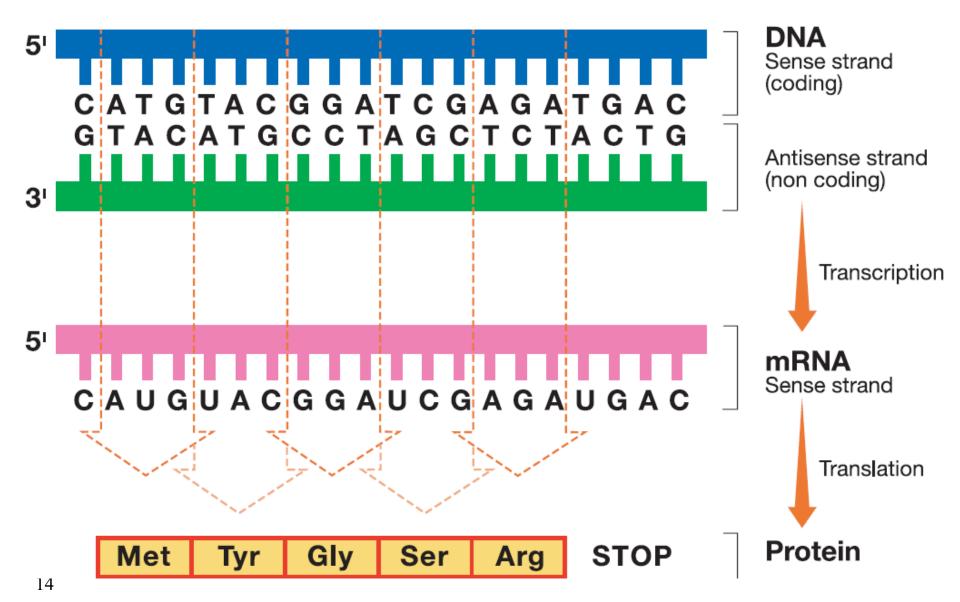
• DNA can be extracted from the fresh plant tissue and multiple copies of the *GAPDH* gene can be amplified using PCR



What do we need for PCR?

- Template DNA (extracted from plants)
- Nucleotides (dATP, dCTP, dGTP, dTTP)
- Taq DNA polymerase
- Magnesium chloride (enzyme cofactor)
- Buffer, containing salt
- Sequence-specific primers flanking the target sequence

DNA sequence varies between species


Primers need to be designed to account for species variation

Section 85 3825	3810	3800	3790	3781	(3781)
GCT <mark>AA<mark>G</mark>AAG</mark> GT			A <mark>TTGT</mark> C <mark>T</mark> -GT		(3781) F309.10 CUT FROM F309 (1705)
'GC <mark>CAA</mark> GAAAGT	ATWOOD 00				T8K14.5 cut from T8K14 or AC007202 (1629)
'GC <mark>CAA</mark> GAAAGT					DQ075672 oxalis stricta (112)
'GCA <mark>AA</mark> AA <mark>G</mark> GT					Lime AB 2 T7 minus pTZ rc (143)
GCT <mark>AAGAA</mark> AGT GCAAAGAAGGT					11116_A06.36 cut from AP004113-rice GAPDH (2924) APDH cut from CAN272042-capsicum annuum (3636)
CCAAAGAAGGT	-				GAPDH cut from ZMGPC1-maize (1627)
	- ACACCATO	TGTCTGI	CTTGGATGTT	TAATTT	AB110609 lycopersicon esculentum (421)
GCCAAGAAGGT					Consensus (3781)
Section 86					
3860 3870	3850		384.0		(3826)
					F309.10 CUT FROM F309 (1742)
					T8K14.5 cut from T8K14 or AC007202 (1665)
					DQ075672 oxalis stricta (150)
					Lime AB 2 T7 minus pTZ rc (179) 11116 A06.36 cut from AP004113-rice GAPDH (2958)
					APDH cut from CAN272042-capsicum annuum (3669)
					GAPDH cut from ZMGPC1-maize (1665)
;TTTGT <mark>T</mark> GT <mark>G</mark> GG	A <mark>TGCTCC</mark> CA	gcaaa <mark>g/</mark>	TC <mark>TGC</mark> TCCTA	TG <mark>T</mark> GAT	AB110609 lycopersicon esculentum (466)
TTTGTTGTTGG	ATGCACC A	CAGCTGA	TCTGCTCCAT	TGT AT	Consensus (3826)
Section 87					

- What if you don't know the exact DNA target sequence?
- How do you design primers?

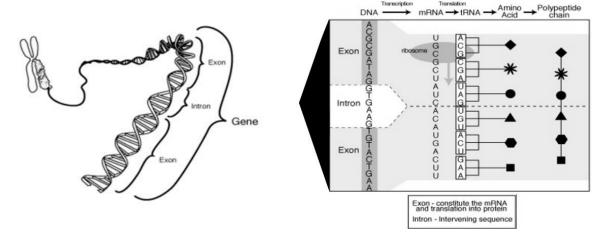
Genetic code Degeneracy

• Multiple codons code for one amino acid

Variations at the DNA level may not be reflected at the protein level

Amino acids and the DNA codons for each.

Ala (A)	Arg (R)	Asp (D)	Asn (N)	Cys (C)	Gln (E)	Glu (Q)	Gly (G)	His (H)	lle (I)
GCA	CGA	GAC	AAC	TGC	CAA	GAA	GGA	CAC	ATA
GCC	CGC	GAT	AAT	TGT	CAG	GAG	GGC	CAG	ATC
GCG	CGG						GGG		ATT
GCT	CGT						GGT		
	AGA								
	AGG								
Leu (L)	Lys (K)	Met (M)	Phe (F)	Pro (P)	Ser (S)	Thr (T)	Trp (W)	Tyr (Y)	Val (V)
Leu (L) CTA	Lys (K) AAA	Met (M) ATG	Phe (F) TTC	Pro (P) CCA	Ser (S) TCA	Thr (T) ACA	Trp (W) TGG	Tyr (Y) Tac	Val (V) GTA
		. ,	. ,	. ,	. ,				
CTA	AAA	. ,	TTC	CCA	TCA	ACA		TAC	GTA
CTA CTC	AAA	. ,	TTC	CCA CCC	TCA TCC	ACA ACC		TAC	GTA GTC
CTA CTC CTG	AAA	. ,	TTC	CCA CCC CCG	TCA TCC TCG	ACA ACC ACG		TAC	GTA GTC GTG


Note: When there are multiple codons for an amino acid, the codons are very similar. For all amino acids with up to four codons, only the third base differs between codons (for example, the four codons for valine, which all begin with GT). Also three codons code for a stop signal, these are TAG, TGA, TAA.

Variation in the Genetic Code

The GAPDH enzyme (protein) is highly conserved but there are variations at the DNA level

Introns are less conserved since they do not code for protein

Conservative substitution-doesn't change protein properties

Degenerate primers are used to account for sequence variation

Plant	Gene	Accession number	Sequence
Arabidopsis	GAPC1	AT3G04120	GACTACGTTGTTGAGTCTACTGG
Arabidopsis	GAPC2	AT1G13440	GACTTTGTTGTTGAGTCTACTGG
Arabidopsis	GAPCP1	AT1G79530	GATTATGTTGTTGAGTCTTCCGG
Arabidopsis	GAPCP2	AT1G16300	GAGTATGTTGTTGAGTCTTCAGG
Pepper	GAPCP	CAN272042	GATTATGTTGTTGAATCTTCTGG
Liverwort	GAPC	AJ246023	GAGTACGTCGTCGAGTCTACCGG
Corn	GAPC1	ZMGPC1	GAGTACGTCGTGGAGTCCACCGG
Corn	GAPC2	U45855	GAGTATGTCGTGGAGTCCACCGG
Corn	GAPC3	U45856	GAATATGTTGTTGAGTCTACTGG
Corn	GAPC4	X73152	GAATATGTTGTTGAGTCTACTGG
Pea	GAPC1	L07500	GATATCATTGTTGAGTCTACTGG
Wheat	GAPC	EF592180	GAGTACGTTGTTGAGTCCACCGG
Rye Grass	GAPC3	EF463063	GACTACGTTGTTGAGTCCACTGG
Tobacco	GAPC	AJ133422	GATTACATTGTGGAGTCGACTGG
Tobacco	GAPDH*	DQ682459	GATTTCGTTGTGGAATCCACTGG
Carrot	GAPDH*	AY491512	GAGTACATTGTGGAGTCCACTGG
Blue Gem	GAPDH*	X78307	GAGTACGTCGTTGAGTCGACTGG
Tomato	GAPDH*	AB110609	GACTTCGTTGTTGAATCAACCGG
Snapdragon	GAPDH*	X59517	GAGTATATTGTGGAGTCCACTGG
INITIAL FOR	WARD PRIM	/IER	GABTATGTTGTTGARTCTTCWGG
Position of ba	se		123456789

Primers are designed using the consensus sequence

Plant <i>GAPDH</i>	Accessio Number	n Sequence
Tobacco	DQ682459	GATTTCGTTGTGGAATCCACTGG
Carrot	AY491512	GAGTACATTGTGGAGTCCACTGG
Blue gem	X78307	GAGTACGTCGTTGAGTCGACTGG
Tomato	AB110609	GACTTCGTTGTTGAATCAACCGG
Snapdragon	X59517	GAGTATATTGTGGAGTCCACTGG
Consensus	sequence	GA <mark>B</mark> TATGTTGTTGARTCTTCWGG
Primer s GA <mark>(GTC</mark>		TGA <mark>(GA)</mark> TCTTC <mark>(AT)</mark> GG

GA(GTC)TATGTTGTTGA(GA)TCTTC(AT) Yield: 12 primers

Reverse primers are designed in the same fashion

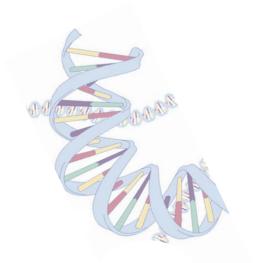
Degenerate primers have optional bases in specified positions

IUB Code	Bases	Derivation of IUB Code
N	A/G/C/T	any
K	G/T	keto
S	G/C	strong
Y	T/C	pyrimidine
М	A/C	amino
W	A/T	weak
R	G/A	purine
В	G/T/C	not A
D	G/A/T	not C
Н	A/C/T	not G
V	G/C/A	not T

To increase the probability that the primer will anneal to the target DNA, variable bases are designed into the primer.

Multiple oligos comprise the forward primer

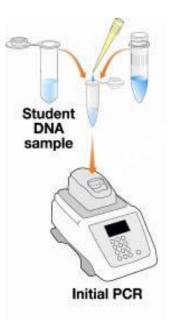
Total ConstructionTotal ConstructionTotal ConstructionPosition 3
has 3 basesCactatGTTGTTGA (GA) TCTTC (AT) GG
CACTATGTTGTTGA (GA) TCTTC (AT) GGPosition 15
has 3 basesCa (GTC) TATGTTGTTGAGGTCTTC (AT) GG
CA (GTC) TATGTTGTTGAATCTTC (AT) GGPosition 15
has 2 basesCa (GTC) TATGTTGTTGA (GA) TCTTCAGG
CA (GTC) TATGTTGTTGA (GA) TCTTCAGG
CA (GTC) TATGTTGTTGA (GA) TCTTCAGG
has 2 basesTotal Canada Cana

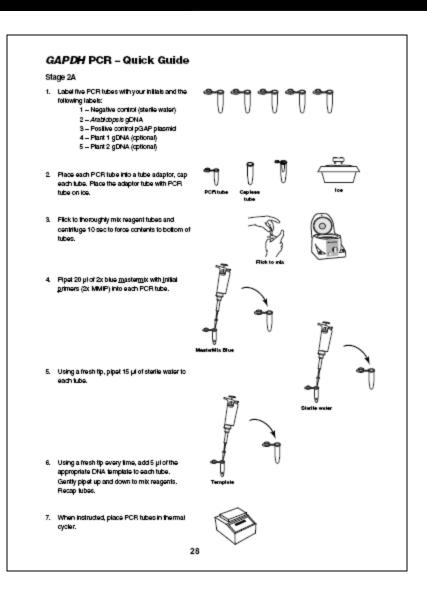

3 x 2 x 2 = 12

different oligonucleotides comprising the forward primer

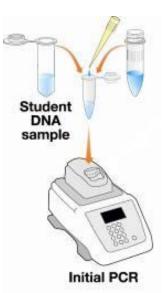
DNA Isolation and Amplification

To identify differences in *GAPDH* code we must isolate plant DNA and amplify the gene of interest using PCR first with degenerate primers (primers that account for variation in the DNA code)


A second PCR reaction (Nested PCR) is necessary to amplify the region which contains one of the *GAPDH* gene sequences (second set of primers are nested inside the initial PCR product sequence)


Biotechnology Explorer PCR primers are color-coded

Setting up initial PCR Reactions



Setting up Initial PCR Reactions

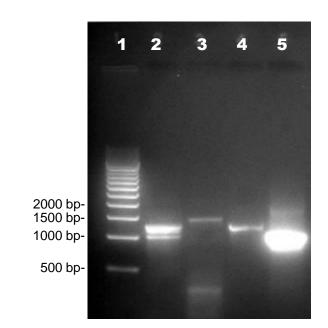
Protocol

- 1. Add 20 µl of blue mastermix with initial primers to each PCR tube
- 2. Add 15 μl of sterile water to each tube
- 3. Add 5 µl of DNA template to the appropriate tube
 - Control Arabidopsis gDNA
 - Control plasmid DNA
 - Test gDNAs
 - Negative control
- 4. Amplify in thermal cycler (Annealing temp 52°C)

Initial PCR Reaction

(with degenerate primers)

_		1		1	1	_					_	_	_	_	_	1	_				_		
Chrom	nosor	nal	DN	IA						Ļ	In	iti	al	P	°C	R							
Prir	ner se	et 1																					
																				F	Prim	ner :	set 1
								P	CR		nir	na	tic	on									
<u>ht</u>	tp: //	ww	w.	bi	<mark>0-1</mark>	ac	<u>l.c</u>	or	n/f	la	sh/	07	'-0	<u>33</u>	5/(07.	-03	33	5_	PC	R.	<u>ht</u> i	<u>ml</u>

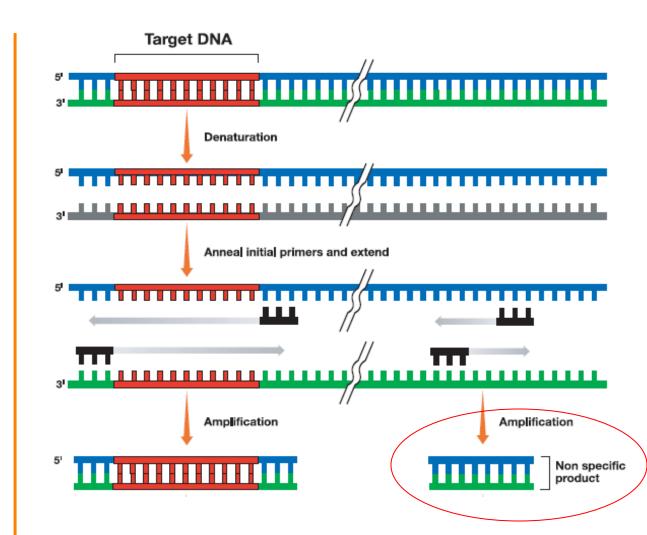


Results of Initial PCR Reactions

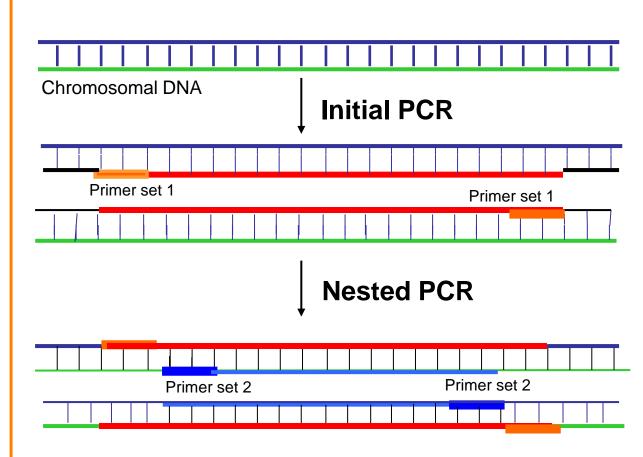
1% agarose gel loaded with (20 µl) initial PCR samples.

Green bean and Lamb's ear gDNA samples generated using Nucleic Acid Extraction module.

Lane 1- 500 bp molecular weight ruler (10 µl), Lane 2- PCR of **control** *Arabidopsis* **gDNA** with initial primers (20 µl) Lane 3- PCR of **green bean gDNA** with initial primers (20 µl) Lane 4- PCR of **lamb's ear gDNA** with initial primers (20 µl) Lane 5- PCR of **pGAP plasmid control** with initial primers (20 µl)


Sometimes no amplification is observed with initial PCR with some plants, or much fainter than this gel

Initial PCR may result in some amplicons that are non-specific


Because of the degenerate primer used to amplify the *GAPDH* of various plant species the initial PCR may also result in some non-specific amplifications

Nested PCR is used to amplify specifically within the amplicon (PCR product) of interest

Why is a Nested PCR reaction necessary?

 Use of degenerate primers may not give you an exact match to the target sequence

INITIAL FORWARD PRIMER

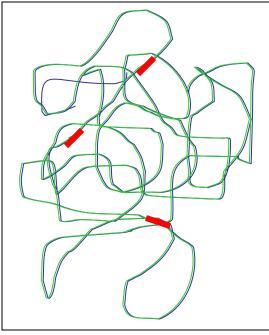
Arabidopsis GAPC1AT3G04120 GACTATGTTGTTGAGTCTTCTGG GACTACGTTGTTGAGTCTACTGG

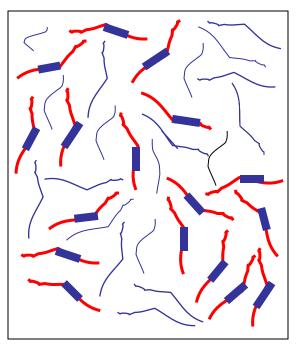
 Because there are multiple primers in the mix, the primer concentration for the matching primer is lower than normal (1/12th concentration)

• Problems with initial PCR:

- inefficient
- non-specific

• Benefits of initial PCR:


- cast a wide net
- increase the pool of specific products



Using Nested PCR to increase your final PCR product

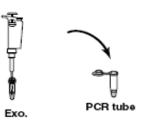
Initial PCR

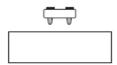
Nested PCR

DNA template: Genomic DNA

DNA template: Initial PCR products

- There is more PCR product from the nested PCR reactions since there is more specific template DNA to start from
- Results: intense, bold band on agarose gel


Exonuclease 1 treatment is needed before the second round of PCR (nested PCR) is done


- The primers that were not incorporated into PCR product in the first reaction must be removed so that they do not amplify target DNA in the second round of PCR.
- Exonuclease I will be added to the PCR products
- The enzyme must be inactivated before proceeding to the nested PCR

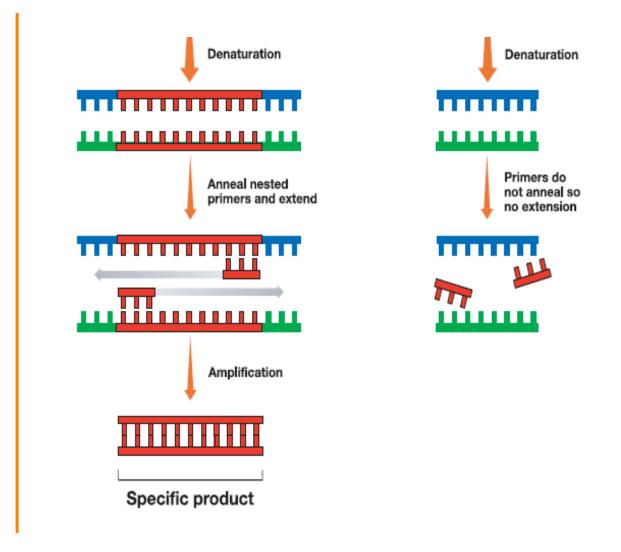
Exo treatment

37°C Water bath

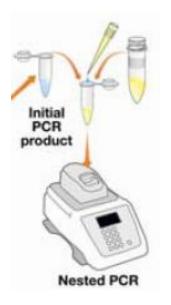
80°C Water bath

Protocol

- 1. Add 1 µl of exonuclease 1 enzyme to the PCR reactions
- 2. Incubate 15 min 37°C
- 3. Incubate 15 min 80°C
- Dilute 2 μl Exo-treated PCR product in 98 μl water

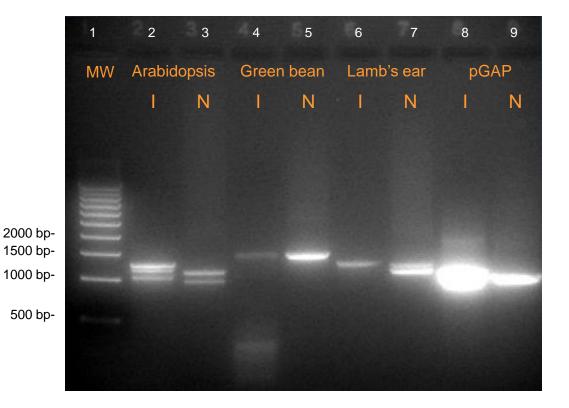

Note: Thermal cycler can be programmed for exo incubations

Nested PCR amplifies only regions within the *GAPDH* gene


Nested PCR is more specific

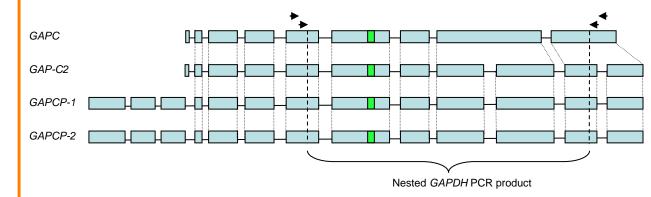
Setting up Nested PCR Reactions

Protocol

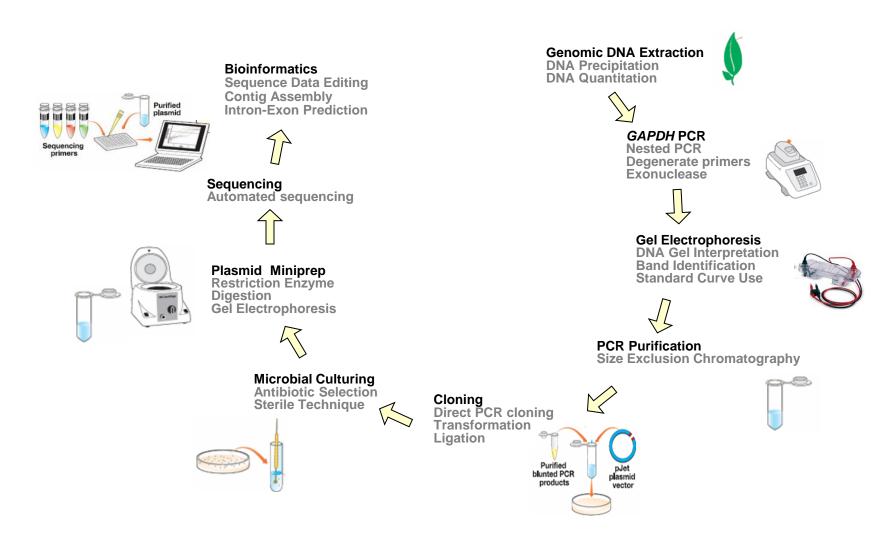

- Mix 20 µl of diluted exo-treated template DNA with 20 µl of yellow mastermix with nested primers
- 2. For controls, mix 20 µl of control pGAP plasmid and 20 µl of water with 20 µl of yellow mastermix with nested primers
- **3. Amplify in thermal cycler** (Annealing temp 46°C)

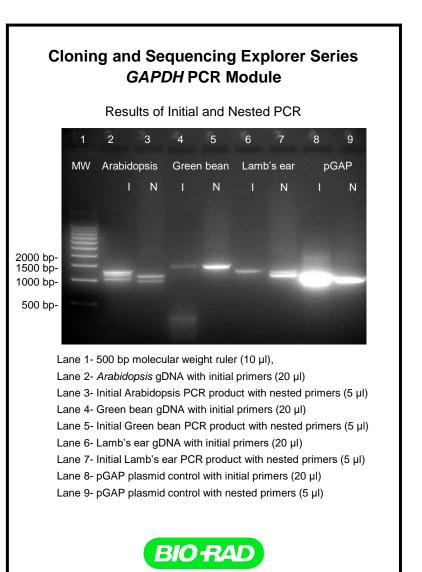
PCR results

1% agarose gel loaded with 20 µl initial PCR samples and 5 µl nested PCR samples.

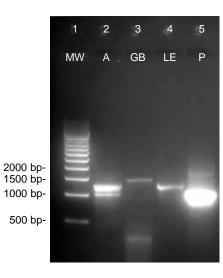


PCR Products


Initial vs. Nested Reactions



Arabidopsis	Length of PCR product (bp)							
GAPC Gene	Initial primers	Nested primers						
GAPC	1065	993						
GAPC-2	1216	1145						
GAPCP-1	1303	1231						
GAPCP-2	1205	1133						



Cloning and Sequencing Explorer Series GAPDH PCR Module

Results of Initial PCR

Lane 1- 500 bp molecular weight ruler (10 µl), Lane 2- Control *Arabidopsis* gDNA with initial primers (20 µl) Lane 3- Green bean gDNA with initial primers (20 µl) Lane 4- Lamb's ear gDNA with initial primers (20 µl) Lane 5- pGAP plasmid control with initial primers (20 µl)

Webinars

- Enzyme Kinetics A Biofuels Case Study
- Real-Time PCR What You Need To Know and Why You Should Teach It!
- Proteins Where DNA Takes on Form and Function
- From plants to sequence: a six week college biology lab course
- From singleplex to multiplex: making the most out of your realtime experiments

explorer.bio-rad.com > Support > Webinars